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Quantitative Inventory Uncertainty  
It is a requirement in the Product Standard and a recommendation in the Value Chain (Scope 3) 
Standard that companies perform and report qualitative uncertainty. This document provides 
guidance for companies wishing to go beyond qualitative and quantify inventory uncertainty.   

Introduction 
Single parameter uncertainty arises from four types of parameters used in calculating product 
inventories:  direct emissions data, activity data, emission factors, and global warming potential 
(GWP) factors.  Any uncertainties from parameters used to quantify these should also be 
considered. An important exception to this classification is those cases where emissions are directly 
measured, in which case uncertainty in that measurement replaces the need to consider activity 
and emission factor uncertainty.  

Parameter uncertainty can be represented by a probability distribution or as a range. Common 
distributions include, but are not limited to, the normal distribution, lognormal distribution, uniform 
distribution and triangular distribution1. For activity data and emission factor data, the log-normal 
distribution is often determined to be a reasonable fit.  Guidance on quantifying parameter 
uncertainty from direct emissions data has been developed by ISO2 and is available in the GHG 
Protocol’s Measurement and Estimation Uncertainty of GHG Emissions tool. This guidance focuses 
on quantifying parameter uncertainty from activity data and emission factors; however, the 
pedigree matrix approach and many of the propagation techniques discussed below may also apply 
for direct emissions data. 

Different approaches of quantifying single parameter uncertainty include: 

• Measured uncertainty (represented by standard deviations); 
• The pedigree matrix approach, based on data quality indicators (DQIs)3; 
• Default uncertainties for specific activities or sector data (reported in various literature4); 
• Probability distributions from commercial databases; 
• Uncertainty factors reported in literature; and 
• Other approaches reported by literature. 

Pedigree Matrix 
If measured single parameter uncertainties are unknown, a pedigree matrix approach can be used 
to calculate uncertainties. Once the single parameter uncertainty values have been determined 
using this approach, the values can be propagated using techniques such as Monte Carlo simulation 
or Taylor Series expansion (discussed below).  

In the pedigree matrix approach, the qualitative data quality assessment results (see section 9.2.8) 
are used to relate the data quality indicators to uncertainty ranges for individual parameters5,6,7.  
Data quality assessment results from activity data and emission factors should be translated 
separately; they are considered together in the propagating parameter uncertainty section.    

In the pedigree matrix an uncertainty factor is assigned to each of the five data quality indicators 
and four data quality criteria (very good, good, fair, and poor).  The uncertainty factors are used to 
compute the GSD2 (the square of the geometric standard deviation). These uncertainty factors, 
shown in table 1, are ultimately based on expert judgment. 
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Table [1] Suggested pedigree matrix for determining uncertainty scaling factors based on data quality ratings 

Indicator score Very 
good Good Fair Poor 

Precision 1.00 1.10 1.20 1.50 

Completeness 1.00 1.05 1.10 1.20 

Temporal representativeness 1.00 1.10 1.20 1.50 

Geographical representativeness 1.00 1.02 1.05 1.10 

Technological representativeness 1.00 1.20 1.50 2.00 

 

The total uncertainty, expressed as a 95% confidence interval, SDg95 (the square of the geometric 
standard deviation), is calculated using the formula shown below8: 
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where: 

U1= uncertainty factor of precision9 
U2= uncertainty factor of completeness 
U3= uncertainty factor of temporal representativeness 
U4= uncertainty factor of geographic representativeness 
U5= uncertainty factor of other technological representativeness 
Ub= basic uncertainty factor 
 
When not enough information is available for a particular data point to apply the data quality 
criteria, companies should assign a default low score (i.e., “poor”) in order to make a conservative 
estimate of uncertainty. Furthermore, all scores should be disclosed along with the results in order 
to promote transparency and ensure accountability of uncertainty analysis results. Single parameter 
uncertainties based on the pedigree matrix approach can be supplemented and used in combination 
with distributions determined through other methods. 

The formula above includes a component of a “basic uncertainty factor.” This is a minimal 
uncertainty rating for specific process categories. It is important to note that this basic uncertainty 
factor may vary by process type or other factors. Table 2 suggests categories and factors for use as 
basic uncertainty factors, based on available information in literature sources. 
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Table [2] Suggested basic uncertainty factors10 

Category of activity or emission Suggested basic uncertainty factor 

Thermal energy  1.05 

Electricity  1.05 

Semi-finished products  1.05 

Raw materials  1.05 

Transport services  2.00 

Waste treatment services  1.05 

Infrastructure  3.00 

CO2 emissions 1.05 

Methane emissions from combustion  1.50 

Methane emissions from agriculture 1.20 

N2O emissions from combustion 1.50 

N2O emissions from agriculture 1.40 

  

Propagating parameter uncertainty 
Various methods exist for propagating single parameter uncertainties in a product inventory to 
determine the overall parameter uncertainty, each with advantages and disadvantages.  Some of 
these methods include Monte Carlo simulation11,12,13, Bayesian statistics, analytical uncertainty 
propagation methods, calculation with intervals and fuzzy logic14 , and Taylor series expansion. This 
guidance does not go into the details of these various methods but only provides a brief description 
of two popular methods: Taylor series expansion and Monte Carlo simulation.  

Taylor series expansion  
Taylor series expansion is an analytical method used to combine the uncertainty associated with 
individual parameters from a single scenario. The approximate squared geometric standard 
deviation (GSD2) of the total product inventory result is determined as a function of the inventory 
result’s sensitivity to each input parameter (i.e., each parameter’s relative impact/influence on the 
total inventory result15) and the squared geometric standard deviation of each parameter. This 
Taylor series expansion method requires the assumption that the uncertainty distribution for each 
input parameter is log-normally distributed.  Although there are limitations associated with using 
geometric standard deviation and assuming a lognormal distribution, its use prevents the 
occurrence of meaningless negative values for emission factors or characterization factors. It also 
accommodates factors that can vary over orders of magnitude and is more representative than a 
normal distribution.  

The single parameter uncertainties can be used to determine the approximate uncertainty in the 
total inventory result based on the equation below.  

 

Where GSDy is the geometric standard deviation of the total inventory result.  GSD1 is the geometric 
standard deviation of the first input (e.g., activity data or emission factor data) and S1 is the 
sensitivity of the result to that factor. This equation applies when all input parameters are 
independent, otherwise covariance must also be considered.  If this equation is applied to inputs 
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that are correlated – even if they have independent activity values - then the uncertainty results will 
be overestimated.  Most scenarios will have some degree of covariance and uncertainty will be 
overestimated, however, this is more favorable than underestimation. 

Monte Carlo simulation  
Monte Carlo simulation is a well-known form of random sampling used for uncertainty analysis and 
is a commonly used tool in commercial life cycle assessment software. In order to perform Monte 
Carlo simulation, input parameters (e.g., direct emissions data, activity data, or emission factors) 
must be specified as uncertainty distributions. The input parameters are varied at random, but 
restricted by the given uncertainty distributions. The randomly selected values from all the 
parameter uncertainty distributions are inserted into the emission calculations. Repeated 
calculations produce a distribution of the predicted result values, reflecting the combined 
uncertainty of the individual parameters.16  

Box [1] Uncertainty and comparisons 

The Product Standard does not support claims based on comparisons of products without additional 
specification such as product rules. Nevertheless, there may be valid instances where a comparison is made 
under the standard, such as in the case of evaluating the amount of improvement achieved by changes in a 
product or process for purposes of performance tracking. In cases where a comparative - rather than 
absolute - result is of interest, methods exist to evaluate the uncertainty of a comparative finding. For those 
applying a Taylor series approach, Hong et al. explain a method for making such an evaluation18.  This 
method removes the uncertainty from parameters that are shared between the two scenarios. For those 
applying a Monte Carlo approach, most software can be configured to provide the uncertainty of a 
comparison. 

Reporting quantitative uncertainty 
Quantitative uncertainty can be reported in many ways, including qualitative descriptions of 
uncertainty source as well as quantitative depictions, such as error bars, histograms, etc. Although 
various methods and tools exist to address individual types of uncertainty, it is impossible to 
represent a true measure of total combined uncertainty in a single, consistent way. Nonetheless, it 
is useful to provide as complete a disclosure of uncertainty information as possible. Users of the 
information may then weigh the total set of information provided in judging their confidence in the 
information.  The following provides a detailed example of calculating and reporting quantitative 
uncertainty.  

[Example] Uncertainty assessment reporting 
A product inventory has been created for a toner cartridge. The functional unit is the printing of 
50,000 black-and-white pages, and the inventory result is 155 kg CO2e per functional unit.  The 
following sections describe an uncertainty assessment associated with this inventory. 

Summary of sources of uncertainty 
Table 3 lists (1) sources of uncertainty identified in compiling the product inventory and (2) a 
qualitative description of the anticipated importance of each area of uncertainty. Uncertainties 
chosen for scenario analysis (included below) are shown in italics. 
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Table [1] Sources and descriptions of uncertainty compiled throughout GHG inventory 

Uncertainty 
type Uncertainty source Description Importance 

Parameter 
uncertainty 

Toner cartridge resin 
production emission factor 

Poor temporal and 
geographical 
representativeness 

Moderate; cartridge resin 
is not a large emissions 
contributor 

Printer electricity activity 
data 

Source: Electricity use is 
taken from an older model 

Moderate; electricity use is 
important, but difference 
in models is expected to 
be small 

Methodological 
uncertainty 

Choice of grid mix 
Choice has been made to 
use a the US national 
electricity grid mix 

High; electricity use is 
important in the result and 
variation among and within 
countries is large 

Functional unit choice 

Number of pages printed is 
chosen as the functional 
unit rather than area of ink 
printed 

Low; within the 
assumption made for 
ink/page, little difference 
would be expected  

Situational 
uncertainty 

User recycling behavior 
Some users may recycle 
more or less cartridges 
than the average 

Moderate; influence of 
recycling is a small  but 
not insignificant 
contributor 

Page yield variation17 
Some users experience 
more or less pages printed 
per cartridge 

Moderate; could affect 
electricity use or paper 
use, which are important 
factors 

Model 
uncertainty Electricity production 

It is difficult or impossible 
to know the exact mix of 
production technologies 
supplying electricity to the 
printers 

Moderate; electricity 
production is important, 
but the variation from the 
assumed production is 
expected to be relatively 
minor. 

Summary of GHG inventory components and contributions 
Table 4 summarizes the components of the GHG inventory, the activity and emission factor data 
used, and the percent of the total result contributed by each of the listed materials or processes. 
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Table [2] Summary of GHG inventory 
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Electricity, 
manufacturing US Within 2 years kWh Electricity 0.84 30.0 25 16% 

Electricity, 
assembly US Within 2 years kWh Electricity 0.84 10.0 8.4 5% 

Electricity, use US Within 2 years kWh Electricity 0.84 63 53 34% 

Heavy truck RER Within 2 years tkm Transport services 0.13 2.8 0.35 <1% 

Aluminum RER Within 10 
years kg Industrial products 12 0.077 0.94 1% 

Copper GLO Within 10 
years kg Industrial products 3.5 0.001 0.002 <1% 

Steel RER Within 10 
years kg Industrial products 5.2 0.39 2.0 1% 

Polystyrene RER Within 10 
years kg Industrial products 3.5 0.45 1.6 1% 

Nylon RER Within 10 
years kg Industrial products 9.2 0.028 0.26 <1% 

PVC RER Within 10 
years kg Industrial products 4.6 0.006 0.029 <1% 

Polyurethane RER Within 10 
years kg Industrial products 4.8 0.020 0.095 <1% 

Corrugated board RER Within 10 
years kg Agricultural 

products 1.4 0.48 0.66 <1% 

Paper,  packaging RER Within 10 
years kg Agricultural 

products 1.3 0.024 0.031 <1% 

LDPE RER Within 10 
years kg Industrial products 2.1 0.026 0.055 <1% 

Paper, use RER Within 10 
years kg Agricultural 

products 1.3 50 63 41% 

Total  155  

Data quality ratings and quantification of parameter uncertainty  
The data sources listed in table 4 are assessed for their data quality based on the criteria 
recommended the GHG Protocol Scope 3 and Product Standards.  These data quality ratings are 
used to approximate an uncertainty range. The chosen data quality ratings and the resulting 
standard deviations are shown in table 5.18 Uncertainty can be reported as GSD, minimum and 
maximum, confidence intervals, etc20.   
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Table [3] Summary of data quality ratings and the resulting standard deviations 
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Electricity, 
manufacturing Fair Poor Good Poor Fair 1.28 Fair Good Poor Fair Fair 1.36 1.01 0.004 2.79% 
Electricity, 
assembly Poor Poor Good Fair 

Very 
good 1.26 Fair Fair Poor Fair Fair 1.36 1.01 0.0004 0.29% 

Electricity, use Fair 
Very 
good Fair Poor Poor 1.45 Poor Poor Poor Poor Poor 1.59 1.01 0.04 28.03% 

Heavy truck Fair Poor Good Poor Poor 1.67 Poor Fair Poor Poor Poor 1.77 1.16 3 E-06 0.00% 

Aluminum Poor Poor Good Poor Poor 1.52 Fair Fair Good Poor Good 1.17 1.16 8 E-06 0.01% 

Copper Good Good Good Poor 
Very 
good 1.09 

Very 
good Good Good Fair Good 1.12 1.16 6 E-12 0.00% 

Steel Poor Poor Good Fair Fair 1.36 
Very 
good Good Good Fair Good 1.12 1.16 2 E-05 0.01% 

Polystyrene Fair 
Very 
good Good Poor Poor 1.44 Poor Poor Fair Poor Poor 1.53 1.16 3 E-05 0.02% 

Nylon Poor Poor Good Poor Poor 1.52 Fair Fair Fair Fair Fair 1.28 1.16 7 E-07 0.00% 

PVC Fair Good Fair Good 
Very 
good 1.14 Poor Good Poor Good 

Very 
good 1.34 1.16 4 E-09 0.00% 

Polyurethane Poor Poor Fair Fair Fair 1.37 Fair Poor Poor Poor Fair 1.38 1.16 8 E-08 0.00% 
Corrugated 
board Fair Poor Fair Good Fair 1.54 

Very 
good 

Very 
good Good 

Very 
good Good 1.44 1.16 6 E-06 0.00% 

Paper,  
packaging Poor Poor Fair Fair Fair 1.6 Fair Poor 

Very 
good Poor Good 1.47 1.16 1 E-08 0.00% 

LDPE Fair Poor Good Poor Poor 1.46 Good Good Good Good Good 1.13 1.16 2 E-08 0.00% 

Paper, use Fair Good Good Fair Poor 1.65 Poor Fair Poor Poor Poor 1.77 1.16 0.1 68.83% 

Total GSD2 
0.14 100 % 
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Using the calculated GSDs and the sensitivities/contributions of each inventory category to the 
total results, the Taylor series expansion method is applied to estimate the propagated 
parameter uncertainty of the product inventory result.  

Reporting parameter uncertainty 
Parameter uncertainty can be presented as a probability density function, such as the familiar 
normal curve (or with one of many other distributions that might be chosen). The shape of the 
representation depends upon the distribution type used to represent it, and the width of the 
distribution reflects the relative magnitude of the uncertainty. A distribution example is shown 
below in figure 1.  

Figure [1] Example of parameter uncertainty distribution 

 
Another convenient means of representing parameter uncertainty is with the use of “error 
bars,” which can be used to depict, for example, the 95 percent confidence limit of the value in 
question. It is important when using error bars to identify the confidence interval that is 
represented.  

Using the toner cartridge example, the inventory results are presented in Figure  2. The column 
(blue bar) is the inventory result of 155 kg CO2e per functional unit, and the uncertainty is 
represented by the error bar (-15 and +15 kg CO2e). Combined, these result in a range of 
inventory result values of 141 to 170 kg CO2e. 

Figure [2] Impact assessment results of toner cartridge GHG inventory study 
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Scenario uncertainty assessment and reporting 
In this example scenario assessment is performed on two of the areas identified as potentially 
important sources of scenario uncertainty. These include the choice of electrical grid mix (where 
both a more localized grid mix and a continental grid mix have been tested as replacements for 
the national grid mix assumed in the initial inventory) and the use of the national average of 40 
percent plastic recycling (where both the case of no recycling and 100 percent recycling have 
been tested as the extreme cases of toner cartridge use by an individual). 

Scenario uncertainty is most appropriate to show as separate values on a chart. A variety of 
chart types could be used for such a purpose; one example, a histogram, is shown in figure 3. 

Figure [3] Scenario uncertainty assessment shown with parameter uncertainty 

 

Conclusion  
The uncertainty assessment provides a perspective on the relative confidence report readers 
can have in the inventory results. In this example, parameter uncertainties combine to provide 
an interval of approximately +/- 15 CO2e surrounding the inventory results value of 155 kgCO2e 
per functional unit. The impact of the user’s recycling behavior is shown to be important for the 
toner cartridge, with users who do recycle most or all materials (cartridge and paper) having a 
substantially lesser impact than those that recycle very little. Due to these variations, individual 
users of the cartridge may produce very different emission totals than that shown in the 
inventory results. This example shows the importance of providing uncertainty information with 
the product inventory results to inform report readers of how to interpret the results.    

 

                                            
1 For further discussion or the use of these distributions in LCA, see Heijungs, 2004, A Review of 
Approaches to Treat Uncertainty in LCA and for detail of additional distributions, see Lloyd, SM, 2007, 
Characterizing, Propagating, and Analyzing Uncertainty in Life-Cycle Assessment 
2 Guide to the Expression of Uncertainty in Measurement 
3 See data collection and quality chapter in the Product Standard 
4 Shannon M. Lloyd and Robert Ries, 2007.Characterizing, propagating, and analyzing uncertainty in Life-
Cycle Assessment: a survey of quantitative approaches. Journal of Industrial Ecology 11 (1) :161-179 
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5 Bo Pedersen Weidema, B.P. and Wesnaes, M.S., 1996. Data quality management of life cycle 
inventories-an example of using data quality indicators. J. Cleaner Prod. Vol. 4, No. 3-1, pp. 167-174 
6 Weidema, B.P., 1998. Multi-user test of the data quality matrix for product life cycle inventory data. Int. 
J. LCA3 (5) 259-265 
7 Data quality guidelines for the ecoinvent database version 3.0 
8 Overview and Methodology for Ecoinvent data v2.0 (2007) 
9 These terms are defined in the data quality section above. 
10 Adapted from Ecoinvent report No.1 Overview And Methodology (Data v2.0, 2007) 
11 Ibid. 
12 Lo, S.-C.; Ma, H.-W.; Lo, S.-L., (2005) Quantifying and reducing uncertainty in life cycle assessment 
using the Bayesian Monte Carlo method, Science of Total Environment 340 (1-3) 23-33 
13 Sonneman, G.W., M. Schuhmacher, and F. Castells. Uncertainty assessment by a Monte Carlo 
simulation in a life cycle inventory of electricity produced by a waste incinerator. Journal of Cleaner 
Production 11 (2003), 279-292. 
14 Tan, R.R., 2008. Using fuzzy numbers to propagate uncertainty in matrix-based LCI. Int. J Life Cycle 
Assess (2008) 13:585–592 
15 Sensitivity is defined as the percent response of the output to input modifications.  This is the same as 
a percent contribution. When the parameter considered is a process, the sensitivity is simply the 
percentage of total impact contributed by that particular process, which can easily be calculated.  For 
example, if a given process is responsible for 7% of the total GWP of the product system, its sensitivity 
(S) is 0.07. 
16 Huijbregts, M.A.J. (1998), Application of uncertainty and variability in LCA. Part 1: a general framework 
for the analysis of uncertainty and variability in life cycle assessment. Int. J. LCA 3(5):273-280 
18 Hong, et al., 2010. Analytical uncertainty propogation in life cycle inventory and impact assessment: 
application to an automobile front panel. Int. J. LCA (15) 499-510 
19 This falls under situational uncertainty because the page yield may vary depending on the usage 
variations of the printer. For example, User A may use the printer to print pictures, and User B may use it 
for reports. The page yield for these different functions can vary significantly. 
20 Note that the uncertainty of the global warming potential (GWP) for the six GHG Protocol gasses is 
assumed to be ± 35% for the 90% confidence interval (see Section 7.2). 
21 To calculate an approximate geometric 95% confidence interval, the minimum (or 2.5th percentile) is 
calculated as the mean (total impact) divided by the GSD2, and the maximum (or 97.5th percentile) is 
calculated as the mean multiplied by the GSD2. 


